Achieving Energy Efficient Laboratory Buildings

Reducing the flow through the fume hood system

Case Study: Chemistry Building Renovation

- 250 Hoods: 8'
- Traditional Sizing: 400,000 CFM
- Goal: Provide only 160,000 CFM (Avoids adding new AHU system & offers \$700,000/Year energy savings)

Factors that Affect Fume Hood System Sizing

- Quantity of Hoods (250)
- Flow Set Points (100 FPM or 60 FPM?)
- Usage Patterns
 - -When?
 - How long?
 - -Sash management habits?
- Manifold size

Case Study: University of Richmond

- Chemistry Building with 40 fume hoods using 56,000 CFM
- Needed 60 hoods
- They chose Usage Based Technology
 - Added 20 new hoods (from 40 to 60)
 without adding mechanical equipment
 - Yet the building operates at 28,000 CFM!
 - Cured existing problems, saves energy (\$80K+/year), and reduced maintenance

Boehringer Ingelheim Ridgefield, CT

- Local utility provided a \$159,700 rebate for installing a VAV/UBC approach
- Annual Energy Savings: \$160,000
- Received FAME award energy efficient design (Facilities Management Award of Excellence)

Bristol Myers, Evansville

- 57 Hood Retrofit
- 30% ROI
- Annual Energy Savings: \$180,000
- SIGECO Incentive \$250,000 for Usage Based Technology

Sources

- 1.Containment Testing for occupied and Unoccupied Laboratory Chemical Hoods -ASHRAE Paper CH-99-9-1. January 1999
- 2. Phoenix Controls Field Study, 114 hoods @ 35 different sites, October 1993 July 1994
- 3. LabPro™
- 4. Energy calculations based on \$3/CFM/year

Achieving Energy Efficient Laboratory Buildings

Control Flows Based on Usage Patterns

www.phoenixcontrols.com